Search results for "Representation theory of finite groups"

showing 7 items of 7 documents

A remark on conjectures in modular representation theory

1987

AlgebraFaithful representationModular representation theoryRepresentation theory of the symmetric groupGeneral MathematicsRestricted representationTrivial representationRepresentation theory of the Poincaré groupReal representationRepresentation theory of finite groupsMathematicsArchiv der Mathematik
researchProduct

On the representation theory of quantum Heisenberg group and algebra

1994

We show that the quantum Heisenberg groupH q (1) and its *-Hopf algebra structure can be obtained by means of contraction from quantumSU q (2) group. Its dual Hopf algebra is the quantum Heisenberg algebraU q (h(1)). We derive left and right regular representations forU q (h(1)) as acting on its dualH q (1). Imposing conditions on the right representation, the left representation is reduced to an irreducible holomorphic representation with an associated quantum coherent state. Realized in the Bargmann-Hilbert space of analytic functions the unitarity of regular representation is also shown. By duality, left and right regular representations for quantum Heisenberg group with the quantum Heis…

AlgebraInduced representationQuantum groupTheta representationRestricted representationTrivial representationRegular representationHeisenberg groupGeneral Physics and AstronomyRepresentation theory of finite groupsMathematicsCzechoslovak Journal of Physics
researchProduct

Characters and Blocks of Finite Groups

1998

This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Fi…

AlgebraNormal subgroupPure mathematicsModular representation theoryBrauer's theorem on induced charactersSylow theoremsCharacter theoryOrder (group theory)Classification of finite simple groupsRepresentation theory of finite groupsMathematics
researchProduct

The McKay conjecture and Galois automorphisms

2004

The main problem of representation theory of finite groups is to find proofs of several conjectures stating that certain global invariants of a finite group G can be computed locally. The simplest of these conjectures is the ?McKay conjecture? which asserts that the number of irreducible complex characters of G of degree not divisible by p is the same if computed in a p-Sylow normalizer of G. In this paper, we propose a much stronger version of this conjecture which deals with Galois automorphisms. In fact, the same idea can be applied to the celebrated Alperin and Dade conjectures.

CombinatoricsFinite groupMathematics (miscellaneous)ConjectureStatistics Probability and UncertaintyInvariant (mathematics)AutomorphismMathematical proofCentralizer and normalizerRepresentation theory of finite groupsGroup representationMathematicsAnnals of Mathematics
researchProduct

Complex group algebras of finite groups: Brauer's Problem 1

2007

Abstract Brauer's Problem 1 asks the following: What are the possible complex group algebras of finite groups? It seems that with the present knowledge of representation theory it is not possible to settle this question. The goal of this paper is to present a partial solution to this problem. We conjecture that if the complex group algebra of a finite group does not have more than a fixed number m of isomorphic summands, then its dimension is bounded in terms of m . We prove that this is true for every finite group if it is true for the symmetric groups. The problem for symmetric groups reduces to an explicitly stated question in number theory or combinatorics.

Mathematics(all)Modular representation theoryPure mathematicsFinite groupBrauer's Problem 1Group (mathematics)General MathematicsCharacter degreesCombinatoricsRepresentation theory of the symmetric groupGroup of Lie typeSymmetric groupSimple groupGroup algebraFinite groupRepresentation theory of finite groupsMathematicsAdvances in Mathematics
researchProduct

Character correspondences in blocks with normal defect groups

2014

Abstract In this paper we give an extension of the Glauberman correspondence to certain characters of blocks with normal defect groups.

Modular representation theoryAlgebra and Number Theory010102 general mathematicsCharacter theoryExtension (predicate logic)01 natural sciencesAlgebraCharacter (mathematics)Compact group0103 physical sciences010307 mathematical physicsClassification of finite simple groups0101 mathematicsGroup theoryRepresentation theory of finite groupsMathematicsJournal of Algebra
researchProduct

Representations of Finite Groups

2009

Pure mathematicsProfinite groupGroup of Lie typeCompact groupLocally finite groupGeneral MedicineGroup theoryGroup representationRepresentation theory of finite groupsMathematicsSchur multiplierOberwolfach Reports
researchProduct